

Scale-up of Planar Solid Oxide Stack Technology for MW-class Power Systems 3rd DOE/U.N. Hybrid Power Systems Conference

May 13, 2003

TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390

Reference: D0136.01

This study aimed to identify scale-up/integration issues in the use of modular anode-supported planar SOFC stacks for MW-class systems.

- Planar anode-supported SOFC design offers high power densities (lower cost) but implications are unclear for hybrid system operation.
- Our objective was to evaluate the attractiveness of integrating SECA-style planar stacks into MW-scale systems, including hybridization.
 - Define boundary conditions for MW-scale planar SOFC stack in the context of a MW-scale hybrid system
 - Analyze cell performance and stresses to evaluate effects of operating conditions and size for radial-flow planar cells
 - Perform high-level analysis of system-level performance and cost of planar SOFCbased hybrid systems at design point.

In particular, this study aimed to investigate the critical operational and performance issues to design and scale-up stacks for the MW-scale system.

This presentation will discuss the implications of stack design and operating conditions for SOFC stack and system performance.

- We developed an anode-supported SOFC cell/stack model to assess the implications for scaling up designs for MW-scale systems
- In particular, the model was used to answer the following questions:
 - How would internal reforming in the stack effect the power density, parasitic losses, and thermal stresses?
 - How would the operating pressure affect the stack performance?
 - How would the inlet air and fuel temperature affect the stack performance?
 - What are the implications of area scale-up for stack stresses, fuel utilization, pressure drops, etc.?

Analysis requires definition of a stack architecture and relevant system configuration to define the system boundary conditions.

For this investigation, we used our SOFC model, which helps estimate the performance parameters, to guide the stack / system design and scale-up.

Operating Conditions Inlet Temperature Performance parameters that Operating influence stack and system **Pressure** design Fuel Composition Mechanical Stress Fuel and Air Flow **SOFC Model** Distribution Rates Electrochemistry Power Density Cell Voltage **Distribution** Reactants Temperature Chemistry Fuel Cell Design Thermal Distribution Cell Architecture Fuel Utilization Mechanical Cell Size Exhaust **Stresses** Materials **Temperature Properties** Contact Resistance

The SOFC model accounts for all the relevant electrical, chemical, thermal, and mechanical phenomena, which influence cell performance.

We considered a circular stack architecture for this investigation.

The results demonstrated that reduced cell operating temperature might allow internal reforming without causing damaging stresses.

Power Density Distribution, mW/cm²

Temperature Distribution. °C

Stress Distribution, Pa

Operating Conditions		
Pressure	1 bar	
Fuel utilization	90%	
Internal reforming	100%	
Inlet gas temperatures	650°C	
Exit gas temperatures	800°C	
Cell radius	5 cm	
Contact resistance	No	

A sensitivity analysis was performed over a range of parameters and the results were used for the design of the SOFC stack module.

Conditions used for sensitivity analysis		
Parameter	Value	
Pressure (bar)	1, 3*	
Fuel utilization (%)	50, 90*	
Internal reforming (%)	50, 100*	
Inlet gas temperatures (°C)	650*, 700	
Exit gas temperatures (°C)	800* , 900	
Cell radius (cm)	5, 18*	
Anode thickness active for methane reforming (μm)	65*, 300	
Contact resistance (Ω cm²)	0 , 0.1	

^{*} base case values

Model results show that 100% internal reforming leads to lower stress levels than than either partial pre-reforming or pure H_2 .

Under high fuel utilization the average power density decreases and stress in anode increases compared with low utilization scenarios.

Increasing operating pressure from 1 to 3 bar leads to 30% improvement in power density, but increasing from 3 to 10 bar leads to only 12% improvement in power density.

The stress levels in the cell are not strongly influenced by cell diameter indicating that cells larger than 5 cm are feasible, however the power density is reduced.

The base case SOFC stack operating parameters were assumed for conceptual system modeling.

SOFC Stack Operating Parameters for System Modeling/Design		
Parameter	Value	
Fuel Cell Radius	18 cm	
Operating Pressure	3 bar	
Inlet Temperatures (Fuel and Air)	650°C	
Maximum Stack Temperature	800°C	
Extent of Internal Reforming	100%	
Fuel Utilization	90%	
Contact Resistance	No	

Base Case Results		
Parameter	Value	
Average power density	505 mW/cm ²	
Peak power density	645 mW/cm²	
Excess air requirement	392	
Temperature change across the stack	170°C	
Maximum stress in anode	166 MPa	

Direct SOFC/GT hybrid system based on base case SOFC operating conditions was modeled.

Hybrid system performance is based on a base case SOFC operating point and is not optimized.

System Operating Conditions		
Parameter	Value	
Compressor Adiabatic Efficiency	75%	
Turbine Adiabatic Efficiency	85%	
SOFC Fuel Utilization	90%	
SOFC Operating Voltage	0.7 V	
Excess Air	390%	
Steam/Carbon	2.3	

Modeled Hybrid System Performance		
Parameter	Value	
SOFC Efficiency	51%	
Overall System Efficiency	64%	
Turbine Output Fraction	20%	
Auxiliary Combustor Fuel Fraction*	7%	

^{*} The model shows auxiliary fuel is required to ensure appropriate inlet temperature regime for the SOFC stack.

Summary

The integrated SOFC model can be used to quantify the implications of the scale-up of anode-supported SOFC cells and stacks.

- Anode-supported SOFC stacks operating at modest temperatures (650-850°C) provide an attractive option for use in MW-class SOFC systems.
- The sensitivity analysis revealed a number of advantages for the planar anode-supported SOFC technology:
 - Reduced cell operating temperature might allow internal reforming without causing damaging stresses
 - The stress levels in the cell are not strongly influenced by cell diameter indicating that cells larger than 5 cm are feasible
- In particular, the model allows to investigate the critical operational and performance issues to design stacks for the MW-scale systems.

Appendix

Local temperature gradient is higher in a small cell, which is likely to be the reason for lower maximum stress in the anode in a larger cell.

